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One of the most striking features of rotating turbulence is the inevitable appearance
of large-scale columnar structures. Whilst these structures are frequently observed,
the processes by which they are created are still poorly understood. In this paper we
consider the emergence of these structures from freely decaying, rotating turbulence
with Ro ∼ 1. Our study follows the conjecture by Davidson, Staplehurst & Dalziel
(J. Fluid Mech., vol. 557, 2006, p. 135) that the structure formation may be due to
linear inertial wave propagation, which was shown to be consistent with the growth
of columnar eddies in inhomogeneous turbulence. Here we extend that work and
consider the case of homogeneous turbulence.

We describe laboratory experiments where homogeneous turbulence is created in
a rotating tank. The turbulence is generated with Ro ∼ 1, and as the energy decays,
the formation of columnar vortices is observed. The axial growth of these columnar
structures is then measured using two-point correlations and in all cases the results are
consistent with structure formation via linear inertial wave propagation. In particular,
we obtain a self-similar collapse of the two-point correlations when the axial coordi-
nate is normalized by Ωtb, where b is a measure of the integral scale in the horizontal
plane and Ω is the rotation rate. Although our results do not exclude the possibility
of significant nonlinear dynamics, they are consistent with the conjecture of Davidson
et al. (2006) that linear dynamics play a strong guiding hand in structure formation.

1. Introduction
We consider rapidly rotating turbulence in which the fluctuating velocity, u, is small

in comparison with |Ω |l, where Ω = Ω êz is the bulk rotation rate and l the integral
scale of the turbulence. It is well known that such turbulence is characterized by the
growth of columnar eddies aligned with the rotation axis (Hopfinger, Browand &
Gagne 1982) and there has been considerable debate as to the physical mechanisms
responsible for this anisotropy.

Most researchers agree that inertial waves play a crucial role in the formation of
these columnar vortices, which makes them quite different to, say, the coherent vortices
seen in two-dimensional turbulence. Indeed, when inertia is weak by comparison with
the Coriolis force, u · ∇u � 2u × Ω , the motion is simply a linear superposition of
inertial waves. Many theories have emerged, but typically they focus on the case
of small Rossby number, Ro = u/2Ωl � 1, and suggest that anisotropy results from
a weak nonlinear coupling of inertial waves operating over a long period of time,
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Figure 1. Radiation of energy from an initial blob of vorticity. While energy radiates from
the vortex in all directions, the axial component of the angular momentum can only radiate
along the rotation axis.

t ∼ l/u (see, for example, Cambon & Scott 1999). When cast in terms of Fourier
space, such nonlinear interactions necessarily take the form of wavevector triads,
and if we are to demand a significant nonlinear effect, despite the smallness of
Ro, these wave interactions must also satisfy a resonance condition. The nonlinear
theories focus, therefore, on near-resonant triad interactions and explain the growth
of anisotropy in the eddy structure in terms of the slow cumulative effects of weak
nonlinearity. Typical of these studies is Waleffe (1993), who proposed an explanation
for the observed two-dimensionalization of rotating turbulence in terms of triadic
interactions, and Cambon, Mansour & Godeferd (1997), who developed a model of
spectral energy transfer in the framework of two-point closure theory.

A fundamentally different explanation for the growth of columnar vortices has
been put forward by Davidson et al. (2006, denoted DSD hereafter). They considered
unforced, decaying turbulence in which the flow evolves from an initial condition
composed of a sea of spatially compact blobs of vorticity (eddies). This would be
typical of a laboratory experiment in which the fluid is stirred up with a grid and
then left to itself. In this theory the columnar vortices evolve simply as a result of
linear wave propagation. The key point, noted in DSD, is that a blob of vorticity
preferentially radiates energy and momentum along the rotation axis. The reason is
as follows. Consider a blob of vorticity centred on the origin at t = 0, as shown in
figure 1. To determine the radiation pattern for t > 0, we Fourier-decompose the initial
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vorticity field and then, for each wavevector k, calculate the associated frequency, � ,
and group velocity, cg . For linear inertial waves, these are (Greenspan 1968),

� = ±2(Ω · k)/|k|, cg = ±2k × (Ω × k)/|k|3. (1.1)

Now an arbitrarily shaped blob of vorticity should yield an equally arbitrary
spectrum of wavevectors and hence, from (1.1), we expect the corresponding group
velocities to be somewhat random. We might anticipate, therefore, that the vorticity
will disperse in all directions, showing no preference to evolve into a columnar eddy.
However, this dispersion is subject to a powerful constraint. In particular, DSD
showed that the axial components of linear and angular impulse of the initial vortex
blob are confined for all time to the cylindrical region of space which circumscribes
the vortex at t = 0. In short, the axial components of linear and angular momentum
can disperse along the rotation axis only.

This constraint turns out to be crucial. Suppose that the characteristic size of the
initial vortex is δ. Then, from (1.1), the fastest group velocity is directed along the
rotation axis and is of the order of cg ∼ Ωδ (where cg = |cg|). So, after a time t ,
the axial component of the angular momentum is confined to a cylindrical region of
volume cgtδ

2 ∼ Ωtδ3. This, in turn, demands that the characteristic velocity within the
tangent cylinder can fall no faster than |u| ∼ |u0|(Ωt)−1, where |u0| is the characteristic
velocity at t = 0. Outside the tangent cylinder, however, the characteristic velocity
falls as |u| ∼ |u0|(Ωt)−3/2, as the radiated energy fills a volume of order (cgt)

3 ∼ (Ωtδ)3.
(Precisely the same conclusions may be reached by the method of stationary phase.)
So the restriction that angular momentum only disperses along the rotation axis
ensures that the energy density is highest within the tangent cylinder and this, in
turn, provides a systematic mechanism for elongating the eddies in the direction of
Ω .

Of course, this theory is purely linear and relates to a flow in which Ro � 1. In
order to test its relevance to rotating turbulence in which Ro is of order unity, DSD
conducted an experiment. Turbulence was excited in the upper region of a rotating
tank using a grid, and then the flow left to itself. Initially, Ro of the turbulence was
somewhat larger than unity, but as the energy decayed, so Ro fell. When Ro reached a
value of order unity, columnar eddies emerged from the turbulent cloud, propagating
in the axial direction as shown schematically in figure 2.

Measurements confirmed that the columnar vortices elongate at a constant rate,
and that the growth rate is proportional to the transverse scale of the vortex, δ, and
to Ω:

lz ∼ Ωtδ. (1.2)

This confirms that the vortices grow by inertial wave propagation, giving support to
the idea that columnar vortex formation is a linear process, at least in the experiment
described.

One weakness of this experiment, however, is that the turbulence is inhomogeneous,
with the columnar vortices growing into a quiescent region. It is not immediately
apparent that the same thing will happen within the interior of a homogeneous field of
turbulence, particularly when Ro ∼ 1, so that linear and nonlinear processes compete.
Nevertheless, DSD speculate that, in such a case, inertial waves will continue to form
columnar structures on the linear time scale of Ω−1, and that these elongated eddies
will provide a catalyst for nonlinear interactions as they spiral up the surrounding
vorticity field. If such a situation did indeed arise, we would expect to see the integral
scale lz, defined, say, as the integral of the autocorrelation 〈ux(x)ux(x+ r‖êz)〉, to grow



84 P. J. Staplehurst, P. A. Davidson and S. B. Dalziel

Ω

δ

Extent of initial
turbulent cloud

Figure 2. Schematic of the experiment described in DSD.

as lz ∼ Ωtδ, as the nonlinear dynamics shadow the growth of the columnar vortices.
(From here on r‖ will represent a displacement parallel to the rotation axis and r⊥ a
displacement perpendicular to it; a similar labelling convention will be used for other
directed quantities such as wavenumber, velocity and spectral components.)

The primary purpose of this paper is to extend the study of DSD to just this
situation, i.e. freely decaying, homogeneous turbulence at Ro ∼ 1, or less. We shall see
that, when Ro is somewhat smaller than unity, the vertical integral scale does indeed
grow linearly in time, as lz ∼ Ωtδ.

However, we also investigate other effects of rotation. For example, we look at
the asymmetry between cyclones and anti-cyclones which has been observed in many
previous studies (e.g. Bartello, Metais & Lesieur 1994 and Hopfinger, Griffiths &
Mory 1983) as well as the effect of rotation on energy dissipation, where we expect
to see the dissipation suppressed (Jacquin et al. 1990).

The structure of the paper is as follows. In § 2 we ask: Are measurements of
two-point autocorrelations, such as 〈ux(x)ux(x + r‖êz)〉, sufficient to confirm or reject
the hypothesis that columnar vortices form by linear wave propagation? We shall see
that these correlations do indeed contain sufficient information to test the hypothesis.
Next, in § 3 and § 4, we describe an experiment in which just such autocorrelations
are measured, where Ro ∼ 1 and the turbulence is homogeneous. We show that the
experiments suggest lz ∼ Ωtδ, which is consistent with columnar vortex formation by
linear inertial waves. Further details of the experiment are described in § 5, such as the
relative dominance of cyclones and anti-cyclones, and the effect of rotation on energy
dissipation. In line with other researchers, we find a dominance of cyclones, and that
rotation inhibits energy dissipation. While the later effect is readily rationalized in
terms of a partial two-dimensionalization of the flow, the reason for the dominance
of cyclones is still poorly understood, with competing explanations being offered by
Bartello et al. (1994) and Gence & Frick (2001).
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2. Two-point correlations in homogeneous, rotating turbulence
Much of the experimental data to be presented in the subsequent sections relates

to two-point autocorrelations, such as two-point vorticity measurements, taken in
turbulence for which Ro is small but finite. As a prelude to discussing these data, it is
natural to ask what kind of information we might expect to find in such correlations in
the limit of small Ro. The point is this: the redistribution of energy and momentum
by linear wave propagation is all about coordinating the phases of the various
wave modes present, so that the location in space where the modes reinforce each
other, rather than cancel, propagate with the group velocity (Lighthill 1978). Thus the
reshaping of a vortex through the radiation of linear waves, A cos(k · x − �t), depends
crucially on phase information, φ = �t , and it is well known that such information
is almost entirely absent in an autocorrelation (Bracewell 1986). This is an inevitable
consequence of the autocorrelation theorem. There is a danger, therefore, that two-
point autocorrelations might be unable to detect the changes in eddy morphology
caused by linear dynamics. If that were to be the case, then they would represent a
poor diagnostic, blind to the very processes which interest us.

It turns out, however, that the autocorrelations do retain a minimal amount of
phase information, φ, and this is just sufficient for us to track the formation and
growth of columnar eddies by linear wave propagation. (We stress that the phase
information we are referring to here is φ = �t , not the phase in wavenumber space.)
The purpose of this section is to show exactly what kind of information is retained
by the autocorrelations, thus enabling us to interpret the experimental data presented
in § 4.

Consider the case where Ro � 1, so that u · ∇u can be neglected on time scales of
order Ω−1. Let us start by calculating the spectral tensor, Φij(k, t). If û is the Fourier
transform of u, then the transformed equation of motion yields

∂2û/∂t2 + � 2û = 0, (2.1)

where � is given by (1.1) and we have neglected viscosity. On integrating (2.1), we
find

û(k, t) = û(0) cos�t − (k × û(0)/k) sin�t, (2.2)

where û(0) is the initial distribution of û, k = |k| and we have used ∂ω/∂t = 2Ω · ∇u

to relate ∂ û(0)/∂t to û(0). From this we can calculate the spectral tensor, which is the
transform of the two-point velocity correlation, Qij = 〈uiu

′
j 〉. It is readily confirmed

that (DSD)

2Φij = Φ
(0)
ij + k−2εipqεjmnkpkmΦ (0)

qn +
[
Φ

(0)
ij − k−2εipqεjmnkpkmΦ (0)

qn

]
cos 2�t

− k−1
[
εimnkmΦ

(0)
nj + εjpqkpΦ

(0)
iq

]
sin 2�t, (2.3)

and, if the turbulence is statistically axisymmetric, this yields

Φ‖ = Φ
(0)
‖ +

[(
k2

⊥
/
2k2

)
Φ

(0)
ii − Φ

(0)
‖

]
(1 − cos 2�t), (2.4)

Φ⊥ = Φ
(0)
⊥ −

[(
k2

⊥
/
2k2

)
Φ

(0)
ii − Φ

(0)
‖

](
1 − cos 2�t

)
, (2.5)

where Φ‖ = Φzz, Φ⊥ =Φxx + Φyy and k2
⊥ = k2

x + k2
y .
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Figure 3. Conversion of a Gaussian eddy into a pair of columnar vortices by linear inertial
wave propagation.

From (2.3) we see that Φii = Φ
(0)
ii . Moreover, in the particular case where Φ

(0)
ij is

isotropic we have the stronger condition, Φij = Φ
(0)
ij .† The fact that Φij cannot evolve

for isotropic initial conditions provides a powerful reminder that a great deal of phase
information has been removed from (2.3) → (2.5). Nevertheless, there is some residual
information in the form of cos 2�t on the right of (2.4) and (2.5), and it turns out that
this is enough to track the formation of columnar eddies by linear wave propagation,
as we now show.

To focus thoughts, let us consider a simple, if somewhat contrived, initial condition.
Suppose that, at t =0, we have a sea of Gaussian eddies of the form

u = ±Λr exp[−2(r2 + z2)
/
δ2]êθ , (2.6)

which are randomly but uniformly distributed in space. (Here r , θ , z are polar
coordinates.) Each of these eddies will immediately radiate energy through inertial
waves, causing a change in their shape. Focusing on just one eddy we find that,
although there is some lateral radiation of energy, the dominant structure at large
Ωt is a pair of columnar vortices of length lz ∼ Ωtδ, whose centres propagate along
the rotation axis at a rate lc ∼ Ωtδ, as shown in figure 3. (The details are spelt out in
DSD.) By superposition, each vortex in our initial condition will behave in this way
and the question at hand is whether there is enough residual phase information in
(2.4) and (2.5) to detect this change in eddy morphology.

Now it is readily confirmed that, at t = 0, the spectral tensor corresponding to this
random sea of Gaussian eddies is (Townsend 1976; Davidson 2007)

Φ
(0)
⊥ = Ak2

⊥ exp[−k2δ2/4], A = 〈u2〉δ5/32π3/2, (2.7)

† Of course, in laboratory experiments at Ro ∼ 1, isotropic initial conditions cannot be created
as the Coriolis force influences the dynamics from the outset.
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Figure 4. Schematic illustration of the time-dependent term in (2.11). Note that the area
under the curve is constant.

and the corresponding two-point correlation is

Q
(0)
⊥ (r) = 〈u(0)

⊥ (x) · u(0)
⊥ (x + r)〉 = 〈u2〉[1 − (r⊥/δ)2] exp

[
−

(
r2

⊥ + r2
‖
)/

δ2
]
. (2.8)

Of course, Φ
(0)
‖ and Q

(0)
‖ are both zero. Using (2.5) to find Φ⊥, and taking the inverse

transform, yields, after a little algebra,

Q⊥ = QS
⊥(r) + πA

∫ ∞

0

∫ ∞

0

(
k2

⊥/k2
)
k3

⊥ exp[−k2δ2/4]J0(k⊥r⊥)

× [cos(k‖r‖ − 2�t) + cos(k‖r‖ + 2�t)] dk⊥dk‖, (2.9)

where QS
⊥(r) is the steady component of Q⊥:

QS
⊥ = 4πA

∫ ∞

0

∫ ∞

0

(
1 − k2

⊥
/
2k2

)
k3

⊥ exp[−k2δ2/4]J0(k⊥r⊥) cos(k‖r‖) dk⊥dk‖. (2.10)

(Here we have taken advantage of the fact that the two-dimensional transform of an
axisymmetric function simplifies to a one-dimensional Hankel transform according to∫

Φ⊥ exp [jk⊥ · r] dk⊥ = 2π

∫ ∞

0

Φ⊥k⊥J0(k⊥r⊥) dk⊥,

where J0 is the usual Bessel function.)
We shall show the precise form of (2.9) shortly. In the meantime, we note that

the main characteristics of (2.9) may be exposed using a simple approximation. The
integral is dominated by transverse and axial wavenumbers of order k⊥ ∼ δ−1, k‖ ∼ 0.
This suggests that a reasonable approximation to (2.9) is to replace � = 2Ωk‖/k by
2Ωk‖/k⊥ in the cosines, and replace (k2

⊥/k2) by unity at the start of the integrand.
The terms involving k‖ can then be integrated exactly, and we find

Q⊥ ≈ QS
⊥(r) +

1

2
〈u2〉

∫ ∞

0

κ3e−κ2

J0

(
κ

2r⊥

δ

)

×
{

exp

[
−

(
r‖

δ
− 2Ωt

κ

)2
]

+ exp

[
−

(
r‖

δ
+

2Ωt

κ

)2
]}

dκ, (2.11)

where κ = k⊥δ/2. Equation (2.11) has the advantage over (2.9) in that it is easier to
interpret. The time-dependent part of the correlation is centred on r‖ ∼ ±Ωtδ, and its
characteristic axial length scale grows as lz ∼ Ωtδ. This is illustrated schematically in
figure 4 and mimics, albeit in a statistical sense, the behaviour of individual eddies
as shown in figure 3. For Ωt � 1, (2.11) simplifies considerably. Consider r‖ = 2Ωtδ.
Then the only contribution to (2.11) comes from wavevectors κ = 1 ± O((2Ωt)−1), and
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Figure 5. A comparison of approximation (2.11) with (2.9) at 2Ωt = 10 and at the radial
locations r⊥ =0, δ, —, exact (2.9); − · −, approximation (2.11). Q⊥ is normalized by 〈u2〉.

so (2.11) integrates to give

Q⊥(r) ≈
√

π

2e
〈u2〉J0

(
2r⊥

δ

)
(2Ωt)−1, r‖ = 2Ωtδ, Ωt → ∞. (2.12)

In order to check the accuracy of approximation (2.11) we have integrated (2.9)
numerically and compared (2.9) with (2.11) at 2Ωt = 10 and at r⊥ =0, δ (figure 5).
The two distributions are indeed similar.

Moreover, in order to verify (2.9), we have performed a simple numerical experiment
in which 106 Gaussian eddies of the form (2.6) were randomly but uniformly
distributed in a cylindrical domain of radius 10δ and length 5 × 105δ. The flow then
develops according to linear theory, and the details calculated using superposition and
the fact that we know how a single Gaussian eddy evolves (DSD). The autocorrelation
Q⊥(r⊥ = 0, r‖) was calculated on the centreline using a volume average to substitute
for the ensemble average, and the difference between the computed correlation and
(2.9) was found to be always less than 5 × 10−3, confirming (2.9).

In figure 6 we show Q⊥(r⊥ =0, r‖) calculated both from the exact solution (2.9) and
the approximate solution (2.11). As expected from (2.11) the autocorrelation becomes
increasingly self-similar when r‖ is scaled by 2Ωtδ.

Evidently, in this simple model problem, sufficient phase information is retained by
Q⊥ to track the change in eddy morphology. Note that, from (2.4), precisely the same
time-dependent information is contained in Q‖,

Q‖ ≈ Q
(0)
⊥ − QS

⊥ − 1

2
〈u2〉

∫ ∞

0

κ3e−κ2

J0

(
κ

2r⊥

δ

)

×
{

exp

[
−

(
r‖

δ
− 2Ωt

κ

)2
]

+ exp

[
−

(
r‖

δ
+

2Ωt

κ

)2
]}

dκ, (2.13)

and similar information is contained in the two-point vorticity correlation, 〈ωzω
′
z〉,

since

〈ωzω
′
z〉 = −∇2

⊥Qii + ∇2Q‖ = −∇2
⊥Q

(0)
⊥ + ∇2Q‖. (2.14)

The exact form of Q‖ is compared with the approximation (2.13) in figure 7.
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Figure 6. Q⊥(r⊥ = 0, r‖) normalized by 〈u2〉 for 2Ωt = 6, 8, 10 and 12: —, exact (2.9);
− · −, approximation (2.11). (a) r‖ normalized by δ, (b) r‖ normalized by 2Ωtδ.

Now the model problem described above is somewhat contrived, designed to
simplify the analysis. However, it is clear from (2.4) and (2.5), and from figure 1,
that we would expect similar results for other initial conditions, provided those initial
conditions are not isotropic. In particular, we would expect r‖ to scale with 2Ωtδ for
large Ωt , as shown in figures 6 and 7. If the same scaling is seen in the experiments,
then this provides strong evidence that the eddies are elongating by virtue of linear
wave propagation.

Finally we note that, if we define an integral scale in the usual way, as the integral
of an autocorrelation, then we lose the phase information relating to the change in
eddy morphology by linear wave propagation. For example,∫ ∞

−∞
Q⊥ dr‖ =

∫ ∞

−∞

{∫
ejk · rΦ⊥ dk

}
dr‖ = 2π

∫
ejk⊥ · r⊥Φ⊥(k⊥, k‖ = 0) dk⊥ (2.15)
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and hence, from (2.3), ∫ ∞

−∞
Q⊥ dr‖ =

∫ ∞

−∞
Q

(0)
⊥ dr‖ = constant. (2.16)

This behaviour is exhibited by (2.11), where the integral of the time-dependent terms
are constant, as indicated by figure 4.

Thus, for Ro � 1, the integral scale lz, defined in the usual way as

lz =
1〈
u2

⊥
〉 ∫ ∞

0

Q⊥
(
r⊥ = 0, r‖

)
dr‖, (2.17)

would show no tendency to elongate as lz ∼ 2Ωtδ. However, definition (2.17) is quite
arbitrary, which suggests that, for Ro � 1, we should adopt a different definition of
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the integral scale, and an obvious candidate is something like

Lz =

{
1〈
u2

⊥
〉 ∫ ∞

0

Q⊥
(
r⊥ = 0, r‖

)
r‖ dr‖

}1/2

, (2.18)

which can track the elongation of the eddies in our model problem. (We note that
this particular length scale is zero in isotropic turbulence.) When Ro ∼ 1, however, it
probably does not matter which definition we use. That is, if Ro is finite but somewhat
less than unity, we would expect nonlinear interactions to shadow the linear dynamics
as the columnar vortices spiral up the surrounding vorticity field. In such a situation,
the nonlinear interactions will occur on the length scale of the columnar vortices and
the axial integral scale, defined via (2.17), would indeed exhibit the scaling lz ∼ Ωtδ.
We shall return to this issue shortly.

3. Experimental method
To test the relevance of our linear theory we have performed experiments on

rotating turbulence with Ro ∼ 1. The apparatus is shown schematically in figure 8.
All experiments were performed in an acrylic tank, 60 cm deep and 45 cm square,
which was filled with water. Turbulence was created by lowering a grid through the
water at a constant velocity of 0.19 m s−1. To vary the largest scales of the turbulence,
two geometrically similar square grids were used, with mesh sizes, M , of 32 mm and
50 mm, and a bar size of b =M/5.

Previous studies (e.g. McKenna & McGillis 2004 and Morize & Moisy 2006) have
highlighted the problem that large-scale systematic flows can be generated between
the edges of the grid and the tank walls. Here we have isolated this unwanted effect
by clamping a 35-cm-square tube to the back of the grid, so that both the grid and
the tube are lowered through the tank at the same time. Tests showed that in the
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Symbol Ω (rad s−1) M (mm) Re Ro

� 0 32 83 ∞
� 0 50 130 ∞
� 0.94 32 83 1.4
� 0.94 50 130 1.0
� 1.94 32 83 0.7
� 1.94 50 130 0.5

Table 1. Experimental conditions.

Ω = 0 case the strength of the systematic flow within the tube was reduced by a factor
of around 5. A shallow tray positioned within the tube both eliminated surface waves
and provided a rigid surface through which images could be recorded.

All of the apparatus is mounted on a turntable and the rotating experiments were
conducted at rotation rates of Ω = 0.94 rad s−1 and 1.94 rad s−1. The tank rotated in
an anti-clockwise direction when viewed from above. Non-rotating experiments were
also conducted to compare with the rotating cases. The initial Reynolds number,
Re= ub/ν, and Rossby number, Ro = u/2Ωl, for the different configurations are
provided in table 1, where u2 = 〈u2〉/3. Here u/l in Ro has been estimated from
measurements of the integral scale root-mean-square vorticity (see § 4.2).

The turbulence was visualized using two distinct techniques. In the first, pearlescence
(consisting of small reflective flakes made from fish scales) was illuminated by a
lightsheet and provided a direct visualization of the structure of the turbulence,
while in the second, Pliolite particles were used to obtain two-dimensional PIV
measurements of the velocity field. In both cases images were captured at 27 frames
per second using a 1 M pixel digital camera operating at 8 bits. A 25-cm-square region,
centred on the midpoint of the tank, was recorded for a time 2Ωt = 40 in the rotating
cases and 20 s in the non-rotating cases, where t = 0 corresponds to the instant when
the grid passes through the centre of the tank. Figure 8 shows the configuration for
the PIV experiments employing a horizontal lightsheet. For PIV experiments using a
vertical lightsheet, and the pearlescence visualizations, the linear halogen light source
was rotated 90◦ about the vertical axis. In this case the camera was positioned at the
side of the turntable, viewing the flow through a front-silvered mirror mounted at
45◦. For the PIV and pearlescence experiments the lightsheets were 5 mm and 10 mm
thick respectively.

Pearlescence consists of individual plate-like particles which become aligned with the
flow and selectively reflect the illuminating light towards an observer. Jeffery (1922)
and Savas (1985) have attempted to characterize the behaviour of these particles,
showing how they respond to simple strain and shear. For the purposes of our
study it is sufficient to note that they tend to highlight regions of intense, persistent
strain. They are therefore good for identifying large-scale, coherent structures, but
are insensitive to small-scale turbulence. In our experiments it was observed that the
pearlescence highlighted a range of scales that were of the order of the largest eddies
in the turbulence. This is illustrated in figure 9, which shows images from the same
decaying rotating turbulence experiment at two different times.

In order to obtain an objective statistical measure of the large-scale structures
highlighted by the pearlescence, we focused on the fluctuations in light intensity,

I (x, t) = Ĩ (x, t) − 〈Ĩ (x, t)〉, (3.1)
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(a) (b)

Figure 9. Images of the flow taken after initiation of the turbulence with M = 32 mm and
Ω = 1.94 rad s−1. (a) 2Ωt = 14.2, (b) 2Ωt = 29.1. The images are 25 cm square.

where Ĩ is the recorded light intensity in a given experiment and 〈· · · 〉 is the ensemble
average over 50 realizations. Two-point correlations of I (x, t) are given in § 4.1.

The pattern-matching calculations for the PIV images were performed using
DigiFlow (e.g. Dalziel et al. 2007). The 212 µm → 250 µm Pliolite particles were
rendered neutrally buoyant by the addition of a small amount of salt to the water.
Here the capture rate proved sufficient to accurately determine the velocities to within
five mesh spaces of the descending grid. As we are interested in the large-scale
structures within the turbulence, the modest frame rate and relatively large particle
size were more than adequate. Tests using a laminar flow showed that we were able
to measure the velocities to an accuracy of better than ±4 × 10−4 m s−1, independent
of the particle velocity for |u| � 2.5 × 10−2 m s−1. Statistical convergence was ensured
through averaging over an ensemble of fifty nominally identical experiments.

To ensure a consistent treatment of any unresolved scales, we adjusted the size and
spacing of the interrogation windows used in the PIV to scale with the mesh size.
The net result was the accurate resolution of the structures down to the bar size, b, in
all experiments. This resolution is in line with that employed by previous researchers
(e.g. Morize, Moisy & Rabaud 2005 and Ruppert-Felsot et al. 2005).

Vorticity fields were determined as part of the sub-pixel image distortion framework
used by DigiFlow. The finite resolution of the velocity measurements inevitably means
the vorticity field is low-pass-filtered, discarding the highest vorticities that occur at
scales smaller than the spacing between our interrogation windows. The vorticity
measurements also contain a higher level of noise (around 5 % of the root-mean-
square value at a given instant) than the velocity information itself. As with the
pearlescence experiments, the measurements were averaged over fifty realizations,
and we believe the large size of the ensemble and integral nature of the statistics
makes the results robust.

From both the pearlescence images and the PIV, the change of eddy morphology
within the rotating turbulence could clearly be seen. To track the growth of the
columnar eddies we shall use two-point one-time correlations,

Ra(r‖) =
〈aa′〉
〈a2〉 , a′ ≡ a(x + r‖êz). (3.2)
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Figure 10. (a) The shaded region represents the area used to evaluate the integral scale.
(b) The growth of the integral scale from pearlescence experiments: �, M = 32 mm,
Ω = 0 rad s−1; �, M = 32 mm, Ω = 1.94 rad s−1.

The variable a represents either the reflected light intensity of the pearlescence, I , or
the horizontal vorticity component from the PIV, ωx . Integral scales based on Ra

(
r‖

)
are determined by

laz =

∫ β

0

Ra(r‖) dr‖. (3.3)

For laboratory experiments it is impractical to evaluate the integral for β → ∞, as
the measurements of Ra(r‖) at large separations tend to be dominated by the weak
systematic flow. Instead, we follow the strategy of previous authors and select β such
that Ra(β) = const, here taken as 0.2. This is illustrated in figure 10(a) and gives a
consistent approximation to the limit of β → ∞ provided Ra(r‖) is self-similar.

4. Statistics in a vertical plane
4.1. Two-point correlations based on reflected light intensity

The results from the pearlescence experiments, based on images similar to those in
figure 9, will now be introduced. By using 〈II ′〉/〈I 2〉, we shall see that the large-scale
evolution of rotating turbulence can be characterized by two distinct periods in time.
During the initial period, defined as t < t1, we have Ro ∼ 1 and so both nonlinear
effects, characterized by (u · ∇)u, and the Coriolis force influence the behaviour of
the fluid. During the second period, defined as t1 < t < t2, columnar eddies emerge
and despite the continuing presence of nonlinearity, characteristics indicative of linear
processes are observed. The values of t1 and t2, as well as the corresponding Rossby
numbers, are given in table 2. For times greater than t2, the presence of the weak
background flow becomes significant and the measurements unreliable.

Before discussing the autocorrelations, let us focus on these two periods by
considering the axial integral scale, lIz . Figure 10(b) shows the growth lIz for the

smaller mesh of M = 32 mm and rotation rates of Ω = 0 and 1.94 rad s−1. When solid-
body rotation is present it is clear that this axial length scale grows at a faster rate,
corresponding to the growth of columnar eddies. The two periods for the development
of the flow are also apparent. Initially, for t < t1 and Ro ∼ 1, the integral scale is a
nonlinear function of time; however, at the later times of t1 < t < t2, the growth rate is
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Symbol Ω (rad s−1) M (mm) Ro (t = t1) 2Ωt0 2Ωt1 2Ωt2 2Ω (t2 − t1)

� 0.94 32 0.65 1.2 7.0 16.5 9.5
� 0.94 50 0.42 4.0 14.0 25.5 11.5
� 1.94 32 0.38 5.0 14.2 29.1 14.9
� 1.94 50 0.37 6.8 14.6 25.7 11.1

Table 2. The time during which the correlations based on reflected light intensity were
measured. The integral scale, lIz grows linearly during the interval t1 < t < t2, and t0 is the
virtual origin in time, as defined by figure 10(b). The values of Ro are based on measurements
of the integral scale vorticity, with Ro = 〈ω2

x〉1/2/2Ω . (See § 4.2.)

constant. The latter is consistent with inertial waves elongating the large-scale eddies
which, in turn, distort the surrounding vorticity field by nonlinear interactions.

Now consider the autocorrelation curves. Figure 11(a) displays the curves that were
used to produce figure 10(b). In the rotating case the curves become correlated over
ever-larger distances, showing that the largest scales of the turbulence are growing in
the axial direction. Furthermore, the linear development in time, which was observed
in lIz , is also evident in the autocorrelations. This can be seen in figure 11(b), which
shows the autocorrelations with r‖ normalized by (t − t0), where t0 is the virtual
origin displayed in figure 10(b). For t1 < t < t2 the curves are clearly self-similar when
expressed in terms of r‖/(t − t0).

Now a linear growth in lIz is not, in itself, proof that the large eddies grow by inertial
wave propagation. However, as discussed in § 2, self-similarity of the correlations when
expressed in terms of r‖/Ω(t − t0) does provide strong support for eddy growth by
linear wave propagation. Just such a collapse on Ω is shown by figure 12, where
the results from the two rotation rates and M = 32 mm are plotted for t1 < t < t2.
In figure 12(a), r‖ is normalized by (t − t0), whereas in figure 12(b), r‖ is normalized
by 2Ω(t − t0). When the rotation rate is not taken into account, each experiment
collapses onto itself, but the inclusion of Ω allows both experiments to collapse to a
single curve. A similar collapse could also be seen for M = 50 mm.

4.2. Two-point correlations based on vorticity

Whilst pearlescence can provide details of the size of the large-scale eddies, it
cannot provide information on either the velocity or vorticity fields. To obtain
these measurements via PIV, we seeded the water with Pliolite particles and then
repeated the experiments in the previous section. Figure 13 shows a typical vorticity
field at 2Ωt = 31.4 in one of the Ω = 1.94 rad s−1 experiments. As the vorticity of
the turbulence (here low-pass-filtered to the scale of the spacing of the interrogation
windows) is far more intense than any residual background recirculation (in the
rotating frame), autocorrelations based on the horizontal vorticity component, ωx ,
are used to quantify the large-scale dynamics. For convenience we shall also use ωx

to evaluate the Rossby number, such that Ro = ωr.m.s./2Ω , where ωr.m.s. is the root
mean square of the integral scale vorticity ωx .

As in § 4.1, let us begin by considering the integral scale, lωz , which is plotted in
figure 14. These are now derived from the vorticity autocorrelation 〈ωxω

′
x〉/〈ω2

x〉 and
agree well with the integral scales measured in the pearlescence experiments. Once
again we see that, when rotation is present, the development of the flow can be
divided into two distinct periods. These periods will be defined by τ1 and τ2 which are
analogous to t1 and t2 in § 4.1. During the initial period, t < τ1, the Rossby number is
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Figure 11. Pearlescence correlation curves for M = 32 mm, Ω = 1.94 rad s−1: —, t < t1; —,
t1 < t < t2. (a) plotted against r‖, (b) r‖ normalized by (t − t0).

of the order of unity, and both nonlinear dynamics and the Coriolis force influence
the turbulence. In the second period, τ1 < t < τ2, the integral scale grows at a constant
rate. This coincides with the results in § 4.1, and is consistent with linear inertial wave
propagation elongating the large-scale eddies along the rotation axis. The variation
of the Rossby number during these two periods is plotted in figure 15, and the times
t = τ1, when the integral scale begins to grow at a constant rate, are shown in table 3. It
is evident that the linear growth in lωz occurs around a value of Ro ∼ 0.4, which is close
to the value of 0.2 observed by Hopfinger et al. (1982, 1983). We anticipate that, the
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Figure 12. Pearlescence correlation curves for (t1 < t < t2): —, M = 32 mm, Ω =0.94 rad s−1;
—, M = 32 mm, Ω = 1.94 rad s−1. (a) r‖ normalized by (t − t0), (b) r‖ normalized by 2Ω(t − t0).

modest difference between our value of critical Ro and that of these earlier papers is
largely due to differences in the experimental configurations. (The earlier experiments
were strongly inhomogeneous and continually forced.) However, we cannot entirely
rule out some influence of the Reynolds number.

Figure 16(a) shows the normalized correlation curves that were used to evaluate
lωz in figure 14. For τ1 < t < τ2, a normalization of r‖ by (t − τ0) should yield an
approximately self-similar collapse, and indeed just such a collapse is shown in
figure 16(b) for both rotation rates and bar sizes. As mentioned in the previous section,
the linear growth of the integral scales is not, in itself, proof that linear inertial wave
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Figure 13. A typical vorticity field for the turbulence at 2Ωt = 31.4 with M =32mm and
Ω = 1.94 rad s−1. The image is 25 cm square.
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Figure 14. The growth of the integral scale from PIV experiments: �, M = 32 mm,
Ω = 0 rad s−1; �, M = 32 mm, Ω = 1.94 rad s−1.
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Symbol Ω (rad s−1) M (mm) Ro (t = τ1) 2Ωτ0 2Ωτ1 2Ωτ2 2Ω (τ2 − τ1)

� 0.94 32 0.38 −8.4 13.4 23.3 9.9
� 0.94 50 0.42 −3.0 14.6 20.8 6.2
� 1.94 32 0.36 −5.2 14.8 31.4 16.6
� 1.94 50 0.40 −2.0 10.6 17.8 7.2

Table 3. The time during which the correlations based on ωx . The integral scale lωz grows
linearly during the interval τ1 < t < τ2, and τ0 is the virtual origin in time.

t (s)

Ro

Ro = 0.4
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0.25
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0.75

1.00
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1.50

Figure 15. The variation of the Rossby number, Ro, with time. The symbols are defined in
table 3 and + indicates where t = τ1.

propagation is the cause for the growth in lωz . However, if the autocorrelation curves
scale on Ω(t − τ0), then we have reasonable support for the hypothesis that the
large-scale eddies evolve through linear wave propagation. As with the pearlescence
results, just such a collapse on Ω−1 can be seen for each bar size in figure 17(a).

We now consider one final normalization, based on the size of the large-scale eddies.
According to expression (1.2), lωz should scale with the initial integral scale, which is
set by the bar size of the grid. Consequently, a normalization of r‖ by Ω(t − τ0)b
should collapse the autocorrelations of all the rotating experiments. Figure 17(b)
shows that this is indeed the case and provides strong support for the idea that linear
wave propagation is the cause of the growth in lωz .

5. Statistics in a horizontal plane
5.1. Symmetry breaking

So far we have focused on the axial elongation of eddies. Whilst correlations have
allowed us to gain some insight into the manner in which these structures form,
we have not yet seen the symmetry-breaking properties of rotating turbulence. This
is a matter we shall now address. It is often reported that the columnar structures
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Figure 16. (a) Vorticity correlation curves for M = 32 mm, Ω = 1.94 rad s−1: —, t < τ1; —,
τ1 < t < τ2. (b) Vorticity correlation curves corresponding to four different configurations of Ω
and b for τ1 < t < τ2. Here r‖ is normalized by (t − τ0) and the symbols are defined in table 3.

which form are predominantly cyclonic. This was first observed in the experiments on
inhomogeneous turbulence by Hopfinger et al. (1982, 1983). By oscillating a grid in
the bottom of a rotating tank of water, columnar structures formed and the majority
rotated in the same direction as the background rotation. This has since been followed
up by studies of homogeneous turbulence, where a dominance of cyclones has also
been observed (see, for example, Bartello et al. 1994 and Morize et al. 2005).

The processes that create this asymmetry are not yet fully understood. One
explanation is furnished by Bartello et al. (1994). They begin by using Rayleigh’s
stability criterion to show that when a background rotation is present, an axisymmetric
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Figure 17. Vorticity correlation curves corresponding to four different configurations of Ω
and b for τ1 < t < τ2. The symbols are defined in table 3. (a) r‖ normalized by 2Ω(t − τ0),
(b) r‖ normalized by 2Ω(t − τ0)b.

columnar vortex is unstable in regions where ωz < −2Ω . In turn, a counter-rotating
vortex is more likely to be unstable than a co-rotating vortex when Ro ∼ 1. The
authors then suggest that this result is relevant to rotating turbulence. As a field
of turbulence decays, it is proposed that both cyclonic and anti-cyclonic structures
form. As counter-rotating vortices are generally unstable, it is inferred that the
anti-cyclones are more susceptible to background perturbations. Consequently, more
of the anti-cyclones break up and the symmetry of the flow is broken. There are,
however, other possible explanations for the asymmetry. For example, Gence & Frick
(2001) considered fully developed, isotropic turbulence which is suddenly subjected
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to background rotation. They showed that, at the moment at which the rotation is
applied,

∂

∂t
〈ω3

z〉 =0.4Ω〈ωiωjSij〉,

where Sij is the rate-of-strain tensor. Since 〈ωiωjSij〉 > 0 in fully developed, isotropic
turbulence, the vorticity skewness must become positive, which is taken to be indicative
of the dominance of cyclones. Other related explanations have been offered, such as
the stretching of absolute vorticity, which favours cyclones. To date, there is no
consensus as to which, if any, of these explanations is correct.

To investigate this asymmetry, the experiments in § 4 were repeated with a horizontal
lightsheet illuminating the mid-section of the tank. The velocity fields within this plane
were then determined by PIV and the degree of asymmetry is viewed using both the
probability density function, p(ωz), and the skewness,

S(ωz) =
〈ω3

z〉
〈ω2

z〉3/2
. (5.1)

Both of these measures have been used in the previous studies of Bartello et al.
(1994), Ruppert-Felsot et al. (2005) and Morize et al. (2005). From the plot of p(ωz)
for M = 32 mm and Ω =1.94 rad s−1 in figure 18, it is clear that whilst initially
p(ωz) is very close to being symmetric, the symmetry of flow is indeed broken. As
time progresses, p(ωz) increases for positive vorticity, and consequently decreases for
negative vorticity.

This asymmetry is also shown in figure 19 where the skewness has been plotted for
all of the rotating experiments. In all cases, the skewness is positive, suggesting that
cyclones are the predominant structures. In line with previous investigations we find
that S grows as S ∼ (2Ωt)n, where Morize et al. (2006) suggest n ∼ 0.7, a result which
is not inconsistent with our data. We also observe that for most of our experiments
S tends to saturate at around t = τ1. This saturation in S is also observed in Morize
et al. (2006).
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Figure 19. The growth of the skewness S(ωz). Symbols are defined in table 3
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5.2. Energy decay

It is widely accepted that turbulence decays at a slower rate when background
rotation is present. Furthermore, this slower decay rate is often linked to the growth
of columnar eddies (see, for example, Jacquin et al. 1990). The reasoning for this is
as follows. In classical non-rotating turbulence, the majority of energy is contained in
the large-scale eddies. As the flow decays, energy is passed from these large scales, via
the Richardson cascade, down to the smallest scales where it is dissipated by viscosity.
The rate at which energy is passed down the cascade, and hence the dissipation rate of
the turbulence, is governed by the large-scale turnover time, l/u. In rotating turbulence,
on the other hand, we have seen that the large-scale dynamics behave differently,
forming columnar structures that persist for far longer than their typical turnover time.
Consequently, energy is retained by these stable structures and restricts the transfer of
energy to the smaller scales. In turn the dissipation rate is also reduced, a result which
is confirmed by the experiments of Jacquin et al. (1990) and Bartello et al. (1994).

In our experiments, we also see that increasing the background rotation reduces
the rate of dissipation. This is shown by figure 20, which plots the variation of 〈u2

⊥〉 in
the horizontal plane. To quantify the decay of energy, experimental data are normally
fitted with a power law function

u2 = A(t − t∗)−n,

where t∗ is a virtual origin in time. In these experiments, measurements are conducted
over modest periods of time, which leads to uncertainty when evaluating t∗ and hence
the decay exponent n. Consequently, we shall not estimate n but simply note that for
both mesh sizes, increasing the rotation rate inhibits the energy decay by an amount
similar to that observed by Jacquin et al. (1990). The dashed lines on the graphs
correspond to

〈u2
⊥〉

〈u2
⊥〉0

=

[
1 + c

ε0(t − t∗)
1
2
〈u2〉0

]−1/c

, (5.2)
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Figure 20. Decay of 〈u2
⊥〉 within the horizontal plane. Rotating cases are plotted for times

t < τ2 and + indicates where t = τ1. (a) M = 32 mm with: �, Ω = 0; �, Ω =0.94 rad s−1; �,
Ω =1.94 rad s−1, (b) M = 50 mm with: �, Ω =0; �, Ω = 0.94 rad s−1; �, Ω = 1.94 rad s−1.
Dashed lines correspond to (5.2).

where ε0 is the dissipation rate, − 1
2
d〈u2〉0/dt , when the grid has come to rest. This is

the standard one-point closure prediction for non-rotating, decaying grid turbulence
at high Re. (In these models c is given the standard value of 0.92 based on grid
turbulence data.) It is reassuring that our data and the curves are reasonably close.

It is interesting to note that all of the curves for rotating turbulence remain smooth
at t = τ1 (indicated by + marks in figure 20) with no obvious change in their form.
This is in contrast to our measurements of other statistics of the flow. Although the
reason for this is uncertain, we note that dissipation is an essentially nonlinear process
and so the role of linear dynamics influencing the development of the largest scales
of the flow will only indirectly affect the Richardson cascade, leading to a gradual
rather than an abrupt change in the rate of dissipation.

6. Conclusions
Our laboratory experiments have focused on rotating turbulence with Ro ∼ 1. In

this regime, we have observed that the large scales, which are initially dominated by
inertia, form columnar eddies aligned with the rotation axis. We have studied this
formation using two-point, one-time correlations in the axial direction. Both reflected
light intensity and the integral-scale vorticity have been used for the correlations and
the results of the two techniques are in agreement.

In both cases the axial integral scale, determined from the correlation curves,
grows linearly with time once Ro < 0.4. During this period of linear growth the
two-point correlations can be collapsed when r‖ is normalized by Ωtb. These
findings are consistent with columnar structure formation through linear inertial
wave propagation, and suggests that the proposal of DSD can be extended from
inhomogeneous to homogeneous turbulence.
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As well as viewing the columnar structures, we have observed other, well-accepted,
properties of rotating turbulence. For all rotating experiments a predominance of
cyclones has been seen, and the skewness plots which describe this predominance are
in line with previous studies. (See, for example, Morize et al. 2005.) The skewness
initially grows as (2Ωt)n and saturates at a value of ∼0.4. There is also clear evidence
that the rate of energy decay is slowed by background rotation. As rotation increases,
more energy is retained by stable large-scale structures and thus prevented from
cascading to small scales.
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